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Abstract. Generative design methods may involve a complex design
space with an overwhelming number of alternatives with their form and
design performance data. Existing research addresses this complexity
by introducing various techniques for simplification through clustering
and dimensionality reduction. In this study, we further analyze the
relevant literature on design space simplification and exploration to
identify their potentials and gaps. We find that the potentials include:
alleviating the choice overload problem, opening up new venues for
interrelating design forms and data, creating visual overviews of the
design space and introducing ways of creating form-driven queries.
Building on that, we present the first prototype of a design analytics
dashboard that combines coordinated and interactive visualizations of
design forms and performance data along with the result of simplifying
the design space through hierarchical clustering.

Keywords. Visual Analytics; Design Exploration; Dimensionality
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1. Introduction

In the domains of design involving physical artifacts (e.g. architectural,
mechanical and industrial design), the geometric forms of design alternatives
and their performance are interrelated and equally important. Each presents
information relevant to different design concerns. Generative design methods,
including parametric design modeling, enable the creation of a large number of
design alternatives. These methods can be augmented through tools that can
estimate the performance of each alternative as they are created. This design
process, guided with performance metrics, can be referred to as performance-based
design (Shi, 2010). The combination gives rise to a design process where
considerations that would traditionally take place at late design phases can now
become part of the early formative phases. This warrants attention to research
for systematically reviewing and building tools for interacting with and exploring
design spaces considering design performance data beyond what design catalog
systems currently offer (Brown and Mueller, 2017b).

An important artifact of this process that presents both opportunities and
challenges for design is the large amount and different types of design data
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involving both geometry and design performance. The field of Visual Analytics
combines and leverages both interactive visualizations and data analysis for the
sense-making of complex and abundant data (Thomas and Cook, 2006). We
suggest that we are faced with a similar challenge in design decision-making
when exploring design alternatives, as addressed by the visual analytics literature.
Unlike data analysis, the main task in design is form-finding given design
constraints and goals as part of a design brief. Focusing primarily on data may
cause a lapse in this main task, while without data, design can be full of oversights.

For better supporting this process, in this research, we propose the use of design
alternatives’ form and performance similarity as a way for simplifying the design
space and further investigating their affordances in an interactive data visualization
setting. Although previous research (Beham et al., 2014; Erhan et al., 2015; Chen
et al., 2015) were based on similar arguments, the conceptual justification that
derived their solutions can be further expanded and applied to better demonstrate
a seamless task integration between design exploration and data analysis, which
we call *design analytics’.

In this work, we build on the argument for design space simplification (Erhan
et al., 2015; Brown and Mueller, 2017b) through the techniques of clustering and
dimensionality reduction which expose and exploit the (dis)similarity between
design alternatives. We further extend it by integrating the results of this
simplification in a larger, interactive design analysis dashboard. We also find that
this similarity-based simplification of the design space has many faces, in the sense
that it can be achieved via varied means, represented in different ways and most
importantly, has many potential applications for design space exploration. These
applications include alleviating the choice overload problem, opening up new
venues for interrelating design forms and data, creating visual overviews of the
design space and introducing ways of querying alternatives through form-driven
criteria. We create conceptual distinctions and remark about the use of design
simplification by reflecting on the examples in the literature. Finally, we take this
reflection one more step and present the first iteration in this line of research of
a design analytics dashboard that combines the visual representations of design
forms and performance data with similarity-based representations.

2. Information Visualizations: Key terms and Concepts

Visual Analytics combines interactive visualizations and data analysis. We address
the use of both in design exploration. We will next introduce a few concepts from
the information visualization literature next then proceed to data analysis in the
form of data clustering and reduction in the next section.

Key terms: A view is a visual representation of some data (e.g. a scatterplot is
a view representing two quantitative variables). Brushing is the act of highlighting
elements on a view via user interaction. Multiple Coordinated Views (MCV) are
views whose visual representations are changed in response to interactions (e.g.
brushing, filtering) on the others. Multidimensional datasets are characterized by
having multiple variables/metrics per record. For example, each design alternative
is a single record and can be evaluated through multiple performance metrics.
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Overview then Detail-on-Demand: To help us understand how data
visualization tools can support the task of design exploration, we can be guided
by the information-seeking mantra of “Overview first, zoom and filter, then
details-on-demand” by Shneiderman (1996). In this work, we focus on the visual
representations (also referred to as views) that provide an overview of information.
We also consider the interactions between these views and on them. An overview
view is a starting point for the exploration upon which the designer can focus their
attention and attend to the details.

3. Design Space Simplification

Clustering and Dimensionality Reduction techniques group alternatives in a way
that enables a hierarchy of choice and puts order into the design space.

3.1. CLUSTERING

Clustering is the process of grouping items based on their similarity. The similarity
between any two alternatives can be defined in terms of a subset (or all) of their
associated data such as input parameters, performance metrics or their geometric
features. The subsets chosen will highlight certain aspects of the two alternatives
and possibly suppress others. For example, we may compute the similarity
between two tower buildings based on the difference in their heights. While this
will enable us to cluster together buildings of similar heights, buildings within the
same cluster can vary with respect to other aspects such as their surface area, or
energy usage. Hierarchical clustering techniques produce a tree where the leaves
are individual alternatives. Similar alternatives belong to clusters which, in turn,
belong to a smaller number of clusters and so on until the root of the tree is reached.

In recent works, we find a number of examples using hierarchical clustering
methods that are performed for visualization purposes. In Erhan et al. (2015),
design alternatives are compared based on the distances between their input
parameters after which they are hierarchically clustered and visualized as a
dendrogram tree. The system Cupid (Beham et al., 2014) is aimed at exploring
the generative space of a geometry generator by categorizing the different shapes
it can produce and understanding the relationship between the input parameters
and these categories. Initially, the distance between alternatives is computed by
directly comparing their geometry (average of minimum distances between their
corresponding mesh vertices). Next, hierarchical clustering is performed using
the calculated distances and clusters are visualized on both a hierarchical radial
tree and a composite parallel coordinates plot. The two views are coordinated
together through brushing. Chen et al. (2015) first cluster alternatives based on
the similarity between their performance metrics and then, within each cluster,
they are clustered again based on chosen quantitative architectural features.
Furthermore, the work by Brown and Mueller (2017a) uses clustering techniques
for identifying families of similarly performing design alternatives and illustrates
their use in design space exploration.
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3.2. DIMENSIONALITY REDUCTION

Dimensionality Reduction (DR) is a set of techniques that assists in analyzing
multidimensional data by minimizing the variables under consideration or
mapping the data into a new, smaller space. This is done for the purposes of
simplifying or denoising the data while retaining any intrinsic patterns found in the
multidimensional data. For example, in the context of parametric design models,
a large number of parameters usually control the generated geometric variations
leaving designers with the challenge of discerning the range of geometries that a
parametric model can express. Harding (2016) proposed applying a DR technique
to map design alternatives, through their input parameters, into a two-dimensional
grid. As a result, the geometric variations can be more readily pronounced as we
move along any of the two, newly synthesized dimensions. The technique used
by Harding is called Self-Organizing Maps (SOM), first introduced by Kohonen
(1982), and it aims at creating a spatial map whereas inputs that are similar in their
original multidimensional space are close to each other on the resulting map.

The spatial map resulting from SOM have been used in different ways such as:
Creating a visual structure that can be colored or extruded to represent performance
data (Fuchkina et al., 2018; van Kastel, 2018), or can be augmented with visuals
(e.g. thumbnails or 3D representations) to give an overview of the geometric
variations in the design space (Harding, 2016; Fuchkina et al., 2018; van Kastel,
2018; Pan et al., 2019). Furthermore, when the number of design alternatives is
more than the cells in the map, SOM can be used for clustering (Erhan et al., 2015).

4. The Many Faces of Similarity

The simplification of the design space through clustering or dimensionality
reduction has a number of applications for design space exploration as can
be construed by reflecting on the examples we surveyed. To present these
applications in context, we first discuss the relation between design forms and
their associated performance data. Followed by their implications on design data
visualization. We also discuss salient issues in design exploration tools that could
then be tackled through simplification.

4.1. FORM AND DATA VISUALIZATIONS OF DESIGN ALTERNATIVES

In design, the geometric forms and their performance data are interrelated
and equally important. Each presents information on different aspects of the
design alternatives. Therefore, we expect that the interactive visualization for
design analysis should enable the exploration of form and performance data both
independently from each other and also in unity. Given the mutual importance
of design forms and their associated data, we find it useful to break down the
components of Shneiderman (1996) taxonomy to focus on either design forms or
data, e.g. an overview task is then performed on either a data or form overview.
A common visualization technique of multidimensional data is the parallel
coordinates plot (PCP). The PCP can provide an overview of the data patterns
and correlation between alternatives. The existing design exploration interfaces
make use of PCPs extensively for providing an overview over data (Beham et al.,
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2014; Abi Akle et al., 2017; Mohiuddin et al., 2018; Tomasetti, 2019). On the
other hand, a grid of thumbnails in DreamLens (Matejka et al., 2018) or a radial
tree visually representing clusters of similar forms in Cupid (Beham et al., 2014)
provides an overview of the forms in the design space.

These visualizations can also be coordinated. For example, views of design
forms in DreamLens and Cupid (a thumbnails grid and a radial tree respectively)
are linked to the data views (a scatterplot and a PCP) via brushing. These are
examples of Coordinated Multiple Views. The work by Javed and Elmqvist (2012)
views (Javed and Elmqvist, 2012) identify a list of techniques for compositing
these views. The aforementioned examples fall under Juxtaposed views. We also
see other types of views’ compositions (Nested) in the Design Space Explorer
(DSE) (Fuchkina et al., 2018) and the thesis by van Kastel (2018).

In the Design Space Explorer (DSE) (Fuchkina et al., 2018), the design form
views are nested in the data view. DSE creates a 2D hexagonal grid through
SOM on which thumbnail images of forms are overlaid and the cells in the
grid are colored based on the performance of the alternatives in each of these
cells. In his thesis, van Kastel (2018) employs a similar technique of creating
a combined overview but situates the visualization in a 3D digital environment
where it encodes the design data geographically, e.g. by using soil layers, terrain
variations, and water levels. By introducing this distinction between data and form
views, whether they are juxtaposed or nested, we can clearly understand the kind
of questions we can ask through interactions that link them. The left part of Figure
1 illustrates linking independent form and data views but can also be useful when
thinking about combined views such as the ones in DSE or van Kastel’s thesis.
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Figure 1. A conceptual model of the coupling of design data and forms in a visual analytics
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context. The Form and Data Similarity is derived by computing the distances between design
alternatives. Examples of views for each are shown in the same colored block.
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4.2. CALL FOR FORM-FIRST INTERACTIONS

We believe that the form overview visualizations in the systems discussed above
can be further expanded to enable interactive form-driven queries that originate
on these visualizations. This is analogous to the queries that are formulated on
data overviews e.g. like brushing on parallel coordinates or scatterplot matrices.
Examples of form-driven queries include: when a thumbnail in DreamLens
is selected, then the point in the scatterplot associated with it is highlighted.
Additionally, the chisel tool in DreamLens (Matejka et al., 2018) filters design
alternatives by directly manipulating their superimposed forms. We also see an
example in the radial tree in Cupid (Beham et al., 2014). Since the tree is created by
clustering alternatives based on their geometric similarity, then brushing parts of
that tree is essentially a form-driven query. We refer to these types of interactions,
whether used for filtering or highlighting, as Form-First interactions. We expect
that research into these interactions can open up new possibilities for supporting
the explicit encoding of form-based design criteria.

4.3. SIMILARITY-BASED COUPLING OF FORM AND DATA

Although both DreamLens (Matejka et al., 2018) and Cupid (Beham et al., 2014)
aim at visually representing design spaces, they show differences in how they
enable interactions on them. The prior system implements a type of Form-First
interactions on the raw 3D or 2D representations of the design forms through its
‘chisel’ tool. Cupid, on the other hand, first simplifies the design space through
clustering and as a result, supports interactions on subsets of the design space.
Both systems consider the visual similarity often found between generated design
alternatives as an important factor in the design of their respective interactions.

We can refer to linking design forms and data in their raw format as direct
coupling to distinguish it from the similarity-based coupling. Similarity-based
coupling starts by computing the similarity between design alternatives. This
computed similarity can be used implicitly or explicitly. An example of the
implicit use can be found in DSE (Fuchkina et al., 2018), where it is possible
to select an alternative on the SOM representation and highlight the thumbnails of
alternatives that are visually similar to it. Explicit use of the similarity data starts by
using it to simplify the design space through clustering or dimensionality reduction
then visually represents their results as 2D maps, trees, or treemaps to name some.
Interactions on the results of this simplification that then updates other data views
can be referred to as an: explicit similarity-based coupling (ESC). An example of
an ESC is the interaction on the radial tree in Cupid (Beham et al., 2014) which in
turns highlights other data views in the system. Brushing on SOM representations
(e.g. as in the DSE) that updates other views can also be considered an ESC. This
is because of the similarity-preserving property of SOM, in that alternatives that
are similar to each other are also closeby on the map.

These explicit representations can be used to provide an overview of the design
space and to reduce the cognitive overload that can result from a large number of
alternatives. Interacting with these representations enable us, depending on the
clustering criterion, to either query the performance of alternatives with similar
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forms or the appearance of similarly performing alternatives. An example of the
first can be seen in (Beham et al., 2014), in the use of radar charts for visualizing
derived properties of similar geometries (i.e. they belong to the same cluster). We
can see examples of the latter in the works by Chen et al. (2015), as well as Brown
and Mueller (2017a) where clustering was shown to allow querying the different
geometric variations that exhibit similar performances. In Figure 1, we illustrate
both Similarity-based coupling and Form-First interactions.

4.4. A CASE FOR FORM-BASED SIMILARITY

The similarity between design alternatives can be computed in different ways
depending on the aspects under comparison. If the similarity measured between
alternatives correlate with their geometric or visual similarity, then we can refer to
that as form-based similarity. Interactions that use form-based similarity, whether
implicit or explicit, can be treated as Form-first interactions (which we argued for
in Section 4.2). This applies to interactions with the results of both clustering and
dimensionality reduction techniques that use form-based similarity data.

Form-based similarity can be computed by comparing input parameters if
similar parameters also result in similar geometries. The applicability of this
assumption is highly limited for design spaces with high complexity (Nagy et
al., 2017) where the relationship between the input parameters and outputs is not
predictable. Furthermore, in a design process that involves multiple generative
design models, whether as iterations on a single model or resulting from a
collaborative setting, we would like to be able to jointly explore them. Relying on
the shared input parameters between them might not be possible or useful. Instead,
we argue for comparing the geometric forms directly. This can be accomplished
through shape similarity approaches which represent a geometric form (2D or 3D)
numerically so that regular distance functions like the Euclidean distance can be
used (Bustos et al., 2005). Alternatively, we can directly compare geometries by
procedurally calculating the distances between their corresponding mesh vertices
as is done in Cupid (Beham et al., 2014). In Figure 1, arrows (4) and (5) illustrate
similarity-based coupling. Arrow (4) is also a type of Form-First interaction since
it is initiated from a representation derived from form-related similarity.

5. First Design Iteration

Building on the arguments we outlined earlier, we describe our first design
analytics dashboard prototype and the dataset we used to evaluate it.

5.1. DATASET FROM A CASE STUDY

During a SmartGeometry (2018) workshop, a group of designers was asked to
develop proposals for a mixed-use high-rise tower design. The tower is to be
located in a downtown context and the necessary geographical and climate data
was provided. Participants were provided with a common set of performance
calculation modules that produced thirteen different metrics covering aspects such
as floor areas per function, solar energy gain, and energy usage among others. Six
designers submitted design alternatives generated by the parametric design models
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they developed reaching a total of 250 alternatives. Each of the alternatives has
a geometric form, performance metrics, and input values. For more details, the
interested reader may refer to the case study by Erhan et al. (2020).

5.2. DESIGN DECISIONS

We developed a visualization dashboard to analyze the data mentioned above. We
improved this dashboard to experiment with similarity-based exploration (Figure
2), which integrates Form and Data views along with Form and Data Similarity
views. Here, we will motivate the choices made in terms of the views and the
interactions between them with respect to the framework in Figure 1.
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Figure 2. A: Dendrogram tree (Form or Data Similarity view), B: Scatterplot (Data view), C:
Parallel Coordinates Plot (Data view), D: thumbnails grid (Form view).

5.2.1. Visualization Views

In this iteration, we have decided to provide both data and form views which are a
parallel coordinates plot and a scatterplot as data views, and a grid of thumbnails
as a form view. Dendrogram trees that represent hierarchies are chosen to present
clusters in the design space with respect to either design forms or performance
data. Because of the multidimensional nature of our performance data, we decided
to use the parallel coordinates plot (PCP) as suggested by (Abi Akle et al., 2017).
The PCP provides an overview visualization of performance data, enables filtering
based on value ranges and can expose correlation patterns. In addition to the PCP,
we have chosen to add a scatterplot chart to enable finding outliers and detecting
a correlation between performance metrics. Since the design alternatives in our
dataset come from multiple design models, we color the lines in the PCP and
the scatterplot depending on the model they were generated from to facilitate
inter-model comparison. We may also limit ourselves to a single model which
then allows us to relate input parameters to performance metrics.

We have argued for design space simplification through dimensionality
reduction and clustering. In this iteration, we decided to start our exploration
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with hierarchical clustering. We chose to compute the distances between design
alternatives in two ways: The first takes the euclidean distance between the
performance metrics of each of the alternatives, and the second compares their
geometry directly using Hausdorff distance (i.e. form-based similarity as per
Section 4.4). Upon computing these distances we used them to create a hierarchical
clustering of the alternatives. The resulting hierarchy tree can be visualized in a
number of ways, including treemaps, dendrogram trees or radial trees, of which
we choose an implementation of dendrogram trees that supports zooming and tree
manipulations. The leaves in this tree are the design alternatives whereas the
intermediate nodes are subclusters. Finally, not all aspects of a design can be
quantified. It is then important for designers to have visual access to the design
forms so that they could identify these qualitative features and compare the designs
forms with each other. To support that, a grid of 2D/3D thumbnails is filled with
the currently selected alternatives in the scatterplot or the dendrogram tree.

5.2.2. Interactions

The main design goal we have is to facilitate communication between the four
views as they represent different aspects of the design data. In most of the cases,
we have favored highlighting the other views when alternatives in one view are
brushed. This is to maintain the context of these alternatives with respect to
the unselected. A design decision was made to start the thumbnails grid with
no form views and fill up the grid upon selection instead of filtering views
down to the size of the selection. The latter approach was taken in DreamLens
(Matejka et al., 2018). This enables an interaction whereas a rectangular brush
can be moved on the scatterplot view (as in Figure 2, view B) gradually while
updating the grid of thumbnails with the currently brushed alternatives only. This
gradual movement demonstrates how geometric forms are changing in relation
to changes in performance values. Finally, the dashboard currently supports
form-first interactions in the form of highlighting alternatives in all data views
when their thumbnails are hovered over.

6. Future Work and Conclusion

We had demonstrated a series of techniques and concepts relevant to exploring
design spaces of computationally generated alternatives. These are derived by
reflecting on and extending the literature of design space simplification and the
patterns of their use. Finally, we presented the first iteration of a design analytics
dashboard that instantiates some of the ideas discussed. In the future, we intend to
continue iterating on and evaluating this dashboard and explore the practical and
design-specific concerns surrounding similarity-based exploration.
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