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Abstract. Parametricmodeling systems arewidely used in architectural
design. Their use for designing complex built environments raises
important practical challenges when composed by multiple people with
diverse interests and using mostly unverified computational modules.
Through a case study, we investigate possible concerns identifiable from
a real-world collaborative design setting and how such concerns can be
revealed through interactive data visualizations of parametric models.
We then present our approach for resolving these concerns using a
design analytic workflow for examine their reliability and validity. We
summarize the lessons learnt from the case study, such as the importance
of an abundance of test cases, reproducible design instances, accessing
and interacting with data during all phases of design, and seeking
high cohesion and decoupling between design geometry and evaluation
components. We suggest a systematic integration of design modeling
and analytics for enhancing a reliable design decision-making.
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1. Introduction
Parametric modeling tools adapting dataflow graphs have been widely used in
many disciplines such as design, engineering, economics, natural sciences, etc.
(Johnston et al., 2004; Sousa, 2012). They enable change propagation in and
across models, exploration of variations, and multi-level interaction (Aish and
Woodbury, 2005). Parametric models can be studied as computer programs and
the activities to build them are akin to composing a program (Davis et al., 2011; Ko
et al., 2011). This includes most aspects of parametric modeling from inserting a
node and writing scripts to using APIs. It is essential that these models are reliable
and perform as intended, and, like computer programs, theymust be tested for their
reliability and validity with a caveat that the testing methods should be unique for
design modeling. Here, we use reliability as a criterion for determining if a given
model performs without errors under changing conditions; and, for validity, if it
produces expected designs with expected performance measures (Lyu, 1996). As

RE: Anthropocene, Proceedings of the 25th International Conference of the Association for Computer-Aided
Architectural Design Research in Asia (CAADRIA) 2020, Paper 272 (Preprint). © 2020 and published by
the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong.



2 H. ERHAN ET AL.

design information captured and used in design grows rapidly, it becomes almost
impossible for the existing computational design ecosystem to assist designers in
tracing their decisions in their designmodels. There is an important need to support
traceability, reliability, and validity of complex design models in a collaborative
environment (Marchenko et al., 2011).

A parametric model’s reliability and validity can be affected by, first, the
complexity of its intricate and changing structure (Erhan et al., 2010; Davis et
al., 2011), and, second, the complexity of the process through which such models
are built (Kasik et al., 2005; Ko et al., 2011). Their complexity increases parallel
to the increase in their model’s fidelity. The process complexity, on the other hand,
can result from the involvement of different people in the modeling. These may be
easily underestimated and must be considered to avoid undesirable outcomes. We
contend that identifying and agreeing to sound practices for controlling parametric
model reliability and validity is crucial. We conducted a case study demonstrating
how the reliability and validity of parametric models can be tested in a realistic
collaborative design case, and how such design models can be improved using the
insight gained from the interactive data visualizations. We refer to the combination
of computational design and visual data analytics as design analytics.

The next section provides a brief background on parametric modeling focusing
on performance evaluation following which we describe our approach and the
case study on how reliability and validity of such models can be tested and
improved. Recent works, e.g. Matejka et al. (2018) and Fuchkina et al.
(2018), have explored the use of interactive data visualizations for design space
exploration. In the context of evaluating parametric models, the work by Beham
et al. (2014) illustrates the use of interactive data visualization and analysis for the
purpose of identifying invalid geometry, whereas the work by Nagy et al. (2017)
demonstrates the use of heat-map visualizations for assessing the quality of the
design space endowed by a parametric model (in terms of its scope and internal
structure). In this study, we show how visualizations can facilitate debugging-like
scenarios and motivate closer inspection of the parametric models in question.
We conclude with recommendations for design teams and software developers
to control complexities in parametric design models, and for this, the need for
integration of design analytics throughout design workflows.

2. Background
2.1. PARAMETRIC MODELING AS PROGRAMMING

While graph-based parametric models share many similarities with imperative
text-based programming, an important distinction arises from the fact that they
make visual modeling possible using nodes and links and have an execution model
adapting concurrency (Sousa, 2012). In addition, while inputs to a text program are
seen as test cases to which the program must correctly react, inputs to a parametric
model can be seeds for exploration. Designers, normally, have no obligation to
maintain them or verify that they would work reliably with users’ inputs as is the
case with most other software.



WHAT DO DESIGN DATA SAY ABOUT YOUR MODEL? 3

2.2. PERFORMANCE EVALUATION IN DESIGN PHASES

Incorporating the performance metrics in design models from conceptual to the
final stages of design has become a common practice (Shea, 2005; Anton and
Ta˘nase, 2016). For this, designers use parametric design tools with analysis
tools, such as EnergyPlus, Radiance, Daysim, and OpenStudio. This combination
allow designers to estimate the design performance as early as possible. However,
they are assessment-oriented rather than focusing on dynamically supporting the
decision-making (Touloupaki and Theodosiou, 2017). Nembrini et al. (2014)
discuss the advantages of using a coding interface both to describe building
form and conduct performance simulations. Their approach aims to address
performance-related design questions at the early design stages. Architects use
parametric modeling combined with various performance analysis software to
influence form exploration in the early stages of design that may lead to more
informed, efficient and meaningful solutions (Anton and Tanase, 2016).

3. Motivation and Approach
Generated design instances are to be evaluated in the context of a
performance-driven design process (Shea et al., 2005; Anton and Tanase,
2016), where the reliability and validity of the models become more pronounced.
The performance computation expects specific geometric fidelity and in specific
data structures; any violation of this contract will result in unreliable or invalid
outcomes. Considering these needs, the creators and users of parametric design
should be aware of the importance of building reliable, scalable and reusable
models as do their counterparts in the mainstream programming communities.
The need for best practices when working with parametric models, especially
when performance matters, is therefore a necessity and concepts such as Patterns
for Parametric Design (Woodbury, 2010) can be part of the answer.

By generating alternatives, we not only explore the design space, but we
simultaneously examine its behavior under various execution scenarios. When
multiple designers work in parallel at a form-finding problem, we can expect more
diverse forms and form-to-performance evaluations. To study this environment
and explore the role of data and its visualization in a design realistic context, the
case study we conducted focuses on experimenting with reliability and validity
testing and improvement of the collaborative parametric design Setup created
during SmartGeometry (2018).

4. Case Study: Collaborative Parametric Design of A High-Rise Building
This case study examines design data from different designers approaching the
same design problem. The analysis of the data used design analytics methods.
We applied this analysis to a sample of issues arising from the use of parametric
modeling systems on complex design problems.

4.1. THE CASE STUDY CONTEXT

The case study is based on our observations of the process and a close study of
the collaborative parametric design setup developed in SmartGeometry (2018)
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‘Inside the Black Box’ group. The group comprised 19 participants who were
designers, programmers, and visualization developers. The group worked on the
design of a mixed-use high-rise building located in a city context with a range of
real-world form and performance concerns, such as land-use, functional-spatial
distribution, heat loss and gain, solar exposure, view quality, etc. The participants
decided to focus on 13 performance criteria in their alternative solutions. One
group of participants, who are professional designers, software developers, or
parametric modelers, worked on developing the work environment setup, which
is composed of performance evaluation, an inputs generator, and server-side
data-sharing components (Figure 1). The five designers in the cluster developed
six different proposals for the mixed-use high-rise tower design and generated
alternatives. We then used their proposed alternatives in our case study.

4.2. DESIGN ANALYTICS WORK ENVIRONMENT SETUP

Our design analytics work environment for testing reliability and validity (Figure
1) is consisting of the following components. First, a parametric model that
specifies and generates geometries for alternatives design. The second component
receives input parameters and changes input values algorithmically to automate
serial generation of alternatives. Parametric design models are combined with a
third component which includes parametrically defined context with site, view,
geography, and the information regarding other structures around the site. The
most complex part of this setup is the component where building performance
measures are calculated. This is composed of in-house developed or third-party
modules linked to the context and parametric model components. The setup is
connected to a database on a dedicated Speckle (2019) server to store and retrieve
form and performance data for each alternative, which are further analyzed using
Tableau (2019) and our custom-designed set of design analytics tools.

Figure 1. Work Environment Setup for Design Analysis: Design Model, Floor Curves and
Envelope (developed by the designers and required for the Performance Calculation module).

We used data from 250 design alternatives generated using parametric models
developed by workshop participants. The data associated with each alternative
comprised: (a) the input parameters used to generate it; (b) the form and geometry;
(c) the 13 different performance values for, e.g. floor area by function, solar gain,
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cantilever areas, etc. Each alternative was denoted with a unique ID that includes
an instance number and a symbol denoting the surname of the model developer.

4.3. CHALLENGES AND PROBLEMS IDENTIFIED

The parametric models in the case study were complex. They presented many
issues: they comprised multiple Grasshopper node clusters nested deep within
other clusters ; the dependencies between the nodes were difficult to trace; the
logic of the dependencies was not obvious, etc. In addition, the modules (e.g.
custom-script nodes) in the models were developed by different people that were
not directly involved in this particular project. Therefore, the changes in the
design models and the changes in the performance calculators might not have been
synchronized. The inconsistencies due to versioning in the models increased the
threat to reliability and validity of the work environment setup. For example, we
identified that there were more than 10 different versions of the generator module
created in the workshop. In addition, after creating visualizations of the initial
data from 250 designs in Tableau (2019) and with our custom analysis tools, we
discovered unexpected patterns on performance calculations. This motivated us to
closely study the work environment setup and the models in it. For example, we
questioned “what the trends in view quality are” and “how the different types of
functions affect heat-loss”. These visualizations hinted to possible threats to the
validity and reliability of the setup that were not obvious at the outset. Below we
discuss some of the salient issues that we observed in the work environment setup.

Figure 2. Left: Scatter plot of Total Floor Area vs. Residential Floor Area. Crosses show
unexpected outliers. The vertical strip (diamonds) on the vertical axis are alternatives with no

residential floors. Right: Floor planes showing segmentation.

Unexpected Correlation. The Total Floor Area (TFA) is the sum of the areas
of the residential, commercial and retail floors of the building, hence we expect
a correlation between each of them and TFA. Instead, as Figure 2 (Left) shows,
we see that some of the alternatives do not follow the expected trend. At first,
the reason was not clear. We looked at the parametric model that generated these
alternatives. This revealed that when a floor level comprised multiple floor plane
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segments, e.g. because of gallery openings in the floor, the module calculating
TFA considered only the very first segment and ignored the remaining on the
same floor level. A further investigation showed that this was due to a mismatch
between the tree data structure containing the floor segments and the list data
structure expected by the TFA module. This made TFA frequently smaller than
the actual sum of the building floor areas. To verify this assumption, we contrasted
alternatives close to the trend with outliers, finding that the outlying alternatives
tended to have floor planes with more than one segment (Figure 2 (Right)).

Figure 3. (Left) A: The same parametric model, similar view and height but the top alternative
form is malformed. B: The same parametric model, similar view despite very different heights.
C: Different parametric models, similar view and height despite differences in the building’s

shells. (Right) D: Original view calculation. E: Updated view calculation.

View Calculation: In comparing view qualities, we noticed that models with
different sizes produced similar view quality values (Figure 3 A, B, and C) in
unfamiliar units (degree/m2). Our close study showed the following: (1) In design
practices, the view from a building should consider targets in multiple locations
and directions. However, the view module was set to one target; (2) The module
ignored the obstacles in the context; and, (3) The line of sights were projected
from the target surface to the building, as opposed to from different points on the
building to the target. In addition, this module used an arbitrary number of parallel
projectors that ignored building size. After identifying these three issues in the
original view module (Figure 3 D), we developed a new view approach (Figure
3 E) that projects view lines from different points at each floor in the building to
multiple view targets and considering the obstacles in the context.

Heat loss. While studying heat loss values in the case study, two experts in
our team recognized unexpected values in, which hinted at a possible problem
with the calculations. The nested clusters calculating heat loss and heat gain
of a building hid the logic and the data visualization showed unexpected results
(Figure 4 (Left)), which, in turn, implied that the model might be invalid. Our
first assumption was that the relevant module in the performance calculation, Heat
Loss, was not working correctly. Therefore, we examined this module to find
probable errors. We found the heat loss calculation used equations inconsistent
with the standards: they were calculating heat loss due to transmission and
ventilation incorrectly. After updating the model with new formulae, we generated
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a new set of solutions to verify the updates.

Figure 4. (Left) Plotting energy use vs total floor area, we expected energy use to be positively
correlated with the total floor area. (Right) Scatter plot of building height versus cantilever

area for 250 alternatives from six different design proposals.

No Variation. Figure 4 (Right) shows a scatter plot of the height versus
cantilever area of the generated alternatives. This visualization helped us discover
that alternatives generated by the model K do not vary in height, while those
generated by model J do not vary in the cantilever area, contrary to what the
designers intended. This flagged a problem in both models.

Input Generator. This module generates random values for each input
parameter in its set range, from which the model generates a new alternative
with the new input values. In the data, we noticed a discrepancy between the
generated input values and alternatives. A close inspection showed that the
generator module was making assumptions about the time that an alternative
would take to be fully computed and prematurely generated new inputs values.
However, reliably generating alternatives requires ensuring that the propagation
solver finishes computing the current geometry and performance before a new
cycle starts.

Table 1. The sample problems identified on the reliability and validity of models and the
corresponding lessons derived when addressing them.

5. Findings and Lessons Learnt
We noted a set of recurring issues and developed a set of solutions or approaches
that can be used in addressing the issues in this case study. Table 1 below highlights
the mapping between these lessons and the sample issues we discussed above.



8 H. ERHAN ET AL.

Using Alternatives as Data. When we work with a single design alternative at
a time, we can only observe the problems that this alternative reveals. Observing
a pattern as in Figures 2 and 4 is not possible unless we generate many alternatives
and use a data visualization in which the pattern is visible. Data from the
alternatives can cover a wide range of test cases demonstrating the model’s
behavior under a diverse sample of generated input.

Need for Forms and Visualizations. The quantitative performance
evaluations and design forms (geometry) present two different aspects of design,
complementing each other. Computed design evaluations capture only a fraction
of the criteria that may be in action, while geometry at low fidelity can be
misleading without further details. For example, the alternatives in Figure 3
(Left) had a similar view performance but the differences between them were only
apparent by contrasting their forms. Similarly, the forms in Figure 2 explain the
deviations in the Total Floor Area of some buildings.

Matching Input to PerformanceModule Requirements. Before starting the
geometry modeling process, the designer needs to be aware of the requirements
and limitations of the performance modules that are suitable for the task. This is
so they can provide the right data structure or level of detail. The miscalculation
of the Total Floor Area in Section 4.3 shows an example of passing the wrong data
structure or so-called data type mismatch.

Using Multiple Parametric Models. For most of the parametric models, the
Total Floor Area module worked properly but the expectations were violated for
a single model that produced unexpected forms. This highlights the advantage of
challenging the module’s generality by subjecting it to different design models.
Furthermore, when we work with multiple design models, we can learn about the
nature of the forms that could achieve high values for given performance criteria.
For example, Figure 4 (Right) shows that the forms generated by the model J had
better cantilever areas than those of the rest.

Experts Required (early-stage involvement). While it is possible for
a correlation pattern or an outlier to raise questions when observed in a
data visualization, an expert knowledge is necessary for proper interpretation.
Although nothing immediately catches our attention on the plots of heat loss
against other performance criteria, an expert with experience in designing
buildings in the same context as in the case study, might better identify the
expected ranges of heat loss.

Reproducibility for Revisiting Past Instances. In general, designers
reproduce an alternative to revisit and reevaluate it against new or updated designs.
Achieving this requires retrieving both the input parameters and the model that
was used to generate it. In our case study, due to the generator problem discussed
in Section 4.3, the reported inputs could no longer be guaranteed to generate the
same outputs. Furthermore, because of the dynamic nature of the design process,
the parametric model is expected to change in time so that the reproduction is
required. It is important then to save the full design model and the correct input
values when an alternative is recorded. Re-creation of the design may be needed
for, for example, when investigating the source of an error, updating an alternative
considering the new information about its performance, or improving form.
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6. Conclusion and Discussion
Embedding performance calculation modules in each design module increases
a parametric model’s complexity and hence affects the models’ reliability and
validity. For example, each time a performance module changed in the case
study, every model had to incorporate the new version, which interrupted the
design process. On a practical side, the computing time taken by the performance
modules in the model hindered the agility and rapid feedback into the design.
Depending on the complexity of the model, the propagation of changes of one
parametric model could take between 5 and 30 seconds. We also observed some
software-specific issues when performance evaluators developed in a different
computer on which the models built. To address these issues, we propose a new
collaborative design Setup that decouples the design models from performance
evaluation modules (Figure 5). We refactored the setup used in the workshop to
separate the concerns and reduce its complexity: while a designer is working on
an alternative, he or she can push the model to the server for evaluation. This
eliminates embedding performance modules in the model, and hence, reduces
complexity. The performance evaluation modules can function in a dedicated
model without replication in each design model.

Figure 5. Original (Left) versus proposed (Right) architecture for the collaborative Setup.

The proposed Setup also integrates interactive design data analysis (design
analytics tools) into the process. Designers may make better sense of their work
when visual analytics is integrated into their workflow. They should be able to
study form and geometry details along with performance data derived from design
alternatives. The systems must make data available by mapping them on the
model, in the model, or on separate visual data analytics interfaces as argued by
Erhan et al. (2010) . However, the workflow for creating and use of these data
visualizations should not create an extra task layer in design.

The mismatch between the fidelity of the parametric models and the
information required by the performance modules could be another source for
errors. The performance modules should be flexible enough to handle varying
input conditions . It is crucial to access different performance evaluation modules
that are suitable for different levels of design abstraction. For example, calculating
heat loss for a low-detail design model will require different input and rigor than
a highly-detailed design model. The Setup should provide matching requirements
of performance modules with the fidelity of the design model.

As demonstrated through the case study, interactive visualization of design data
can improve the reliability and validity of parametric modeling in a collaborative
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design setting. A bottleneck in achieving this is that parametric modeling and
visual analytics are often discrete workflows. To alleviate this bottleneck, we need
further and more systematic studies for exploring how the integration of these two
workflows, i.e., parametricmodeling and design analytics, can be further achieved.
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